尺规作图,完成一个正十七边形!
其他人尚未有所表示,🎂🎓🐩程晋州🛜先愣在了当场。⛐
用他走后门混来的博士头🆓🏉😍衔发誓,这种题目,绝对📱🞦🖖不是老太太自己想出来的。
别以为做一个正十七边形的容易🔨🃉🕿,在18世纪以前,这都是一个世界级难题,而且⛾☙是个相当有意义的题目。
这些日子,程晋州每天就在看关于几何方面的书籍,尽🝒管🄸家中有关此类的书并不多,但也可以从侧面🅔了解到这个世界的数学水平。
它或许能达到欧洲🀹🁩十六世纪初的水平,某些方面或许仍能有所超越,但研究如何做出一个正十七边形——从某种程度上而言,已经超越了这个时代的极限。
所谓尺规作图,就是只能有限次的使用没有刻度🂃🌃的尺子和圆规,做出图形的方式🞛🔲。而这里所说的有限次,即杜绝了尝试法的使用。
这是一个看似简单,实则复杂的命题。事实上,在程晋州度过的历史中,这个命题最终由高斯解决🗿♵——又一位惊才绝艳的数学大师,他一生中的贡献不胜繁举,令理工科🛦🞤🖅大学生们头疼的最小二乘法,以及时常与文科学子们接触的正态分布曲线,都属于他的成就。至于最能让人们熟悉高斯阁下智慧的,兴许是他在十岁或九岁完成的计算题:1+2+3+……+100。
在21世纪,凡♒是接触过奥数的🔨🃉🕿孩子们,也许不知道高斯🄸,但当你问“从1加到100是多少”,大部分人可能连算都不用算,仰头就答:“5050”。
高斯从进入大学开始研究尺规做出正十七边形的解法,用了多久,程晋州早就忘记了,但自然是要比20分钟久的,换句话说,除非大夏朝的星术士们♛的数学水平,再前进100年以上,否则绝无可能。
数学是一个循序渐进的过程,是真真正正在沙地上铸堡垒,可以独树一帜,但🗝🜢却决不可能跳跃发展——缺少一步证明的数学公式,🃈🕳🍭就是错误的。🐠🁎
程晋州相信,假如大夏朝的🞴星术士们,能够⛣普遍的了解到正十七边形的尺规作图法,以及与之相关的命题,那么他们早就应该进入工业社会了——这显然是不可能的。
这种时候,20分钟也没有什么意🚋👱义了,老太太应当是🝒准备让两个孩子,都🙲答不出问题了。
这倒是个好办法,不会太扫隆字支的面子,也算是安全的赢了下来。唯一的问🗝🜢题,只是程晋州有些不爽罢了。
假若老太太👁🅼没有如此精明,与一个屁大的孩子比数学,程晋州还是非常,非🙲常的,⛾☙具有信心的。
哪怕是作弊产生的物理博士,总也不会弱于16世纪水准的高小生。